Biological Physics
Intro-Biomolecules
Statistical-Physics-Basics
Basics
Microstate: M particles, N levels: \(\Omega = M^N\) Macrostate: Histogram of the number of particles per energy level Macrostate{3, 1, 5}:
- 3 particles are in level 1
- 1 particle is in level 2
- 5 particles are in level 3
Fundamental concept of statistical Physics
- Describe a system only as a MACROSTATE = Histogram
- It is not relevant which individual particle is in what level
- Compared to the exact description of a system (MICROSTATE), information is lost. A histogram contains LESS information than the data set that generated it
- Cannot construct the exact(MICROSTATE) of a system from the MACROSTATE because the MACROSTATE is just a distribution
- The amount of the missing information is measureed by the statistical weight \(\Omega\) of the Macrostate, or \(\ln(\Omega)\)
Stastical weight of a macrostate \(\Omega\)
How many microstates belong to the macrostate eg: {2,0,0,1,0} has 3 microstates
\(\Omega = N!\)(所有粒子能量均不相同)
Degeneracy
\({1,0,0,2}: \Omega = \frac{3!}{2!}\)
Entropy
\(S = k_B \ln \Omega, \Omega = \frac{N!}{n_0!n_1!\cdots}\)
Stirling's theorem \[N! \approx \frac{N^N}{e^N}\sqrt{2\pi N}\] \[\ln N! \approx N \ln N -N\]
Entropy S is a property of a macrostate of a system, gives the level of disorder of that macrostate
Boltzman-Free-Energy
Boltzman
\(\ln \Omega = \ln \frac{N!}{\prod_{i}n_i!} = N\ln N - \sum_{i}(n_i\ln n_i)\) Maximum of entropy occurs for \(dS = d(k_B \ln \Omega)=0\) \[d\ln\Omega=-\sum_{i}\ln n_i dn_i=0\] \(\sum_i n_i = N, \sum_i dn_i=0\) Use Lagrange's method of undertimined multipliers: \(n_i = \frac{N}{M}\)
Microcanonical ensemble
\[\sum_i \epsilon_in_i = E\] \(n_i = Ae^{-\beta\epsilon_i},A = e^{-\lambda}\) \(n_i = N\frac{e^{-\beta\epsilon_i}}{\sum_ie^{-\beta\epsilon_i}}\) \(p_i = \frac{e^{-\beta\epsilon_i}}{\sum_ie^{-\beta\epsilon_i}}\) \(Z = \sum_{i=1}^{M}e^{-\beta\epsilon_i}\) \(T=0,\beta = \infty,p_1=1,p_{i\geq 2}=0\) \(T=\infty,\beta=0,p_i = \frac{1}{M}\) \(E = \sum_i \epsilon_in_i=N\sum_i\epsilon_ip_i=\frac{N}{Z}\sum_i\epsilon_ie^{-\beta\epsilon_i}=-N\frac{\partial\ln Z}{\partial\beta}\)
Constant total energy of system depends on temperature
Connection
\(dQ=TdS\) \[E=U=\sum_i\epsilon_in_i\] \[dU = \sum_i\epsilon_idn_i+\sum_in_id\epsilon_i\] 因为\(\ln \Omega\)里面有\(dn_i\),所以第一项指的是\(dQ\),第二项是\(dW\)
Ensembles
\[S_{AB}=S_A+S_B\]
看看下面三个定义怎么推的
Temperature definition
\[\frac{1}{T}\equiv \frac{\partial S}{\partial E}\]
Pressure definition
\[\frac{P}{T}=(\frac{\partial S}{\partial V})_E\]
Chemical potential definition
\[\frac{\mu}{T}=-(\frac{\partial S}{\partial N})_{E,V}\]
Free energy
看ppt还有tutorial吧
Partition Function
Degeneracy
\(Z=e^{-\beta\epsilon_1}+2e^{-\beta\epsilon_2}\)
In equilibrium, E,S and F are connected t Z by simple equations
\(S=\frac{E}{T}+Nk\ln Z\) \(F =E-TS\) \(S=Nk(\ln Z +T\frac{\ln Z}{\partial T})\)
Partition function of the system
\(Z_N=Z^N\) \(Z_N=\sum_ie^{-\beta E_i}\)
Boltzmann Distribution derivation by system
\(p_i=\frac{1}{Z_N}e^{-\beta\epsilon_i}\)
Mixing-Osmosis
Mixing Entropy and dilute solutions
Lattice models: \(N=N_W+N_S\)
Entropy of Mixing
Polymer solutions-Mixing entropy
Polymer solutions
Entropy of mixing: \(\Delta S_{mix}=-k(A\ln \frac{A}{A+B}+B\ln \frac{B}{A+B})\)
看ppt还有tutorial吧
Osmosis
Entropy of mixing: \(\Delta S_{mix}=-k(N_S\ln \frac{N_S}{N_S+N_W}+N_W\ln \frac{N_W}{N_S+N_W})\approx -k(N_S\ln \frac{N_S}{N_W}-N_S)\)
Solvation energy = contribution per solute molecule multiplied by the total number of such molecules. \[dU=\epsilon_s dn_s\] First law of thermodynamics \(\epsilon_sdN_s+\mu_W^0dN_W=TdS+\mu_SdN_S+\mu_WdN_W\) 分别令\(dN_S,dN_W=0\), 有\(\mu_W=\dots, \mu_S = \dots\) 使用\(\Delta S_{mix}\)得到所需偏导 最后得到:\(\mu_S=\epsilon_S+kT\ln \frac{n_S}{n_W}\) \[\mu_S=\mu_0+kT\ln \frac{c}{c_0},\enspace c =\frac{n_S}{V},\enspace c_0=\frac{n_W}{V}\]
Osmotic Pressure
\[\Delta P=cRT\] \(R = k_BN_A\) if equation contains kB, quantities relate to one particle, otherwise relate to one mole
\[\Delta P=cRT,\enspace c(mol/L)\]
\[\Delta P=ck_BT,\enspace c(个/m^3)\]
Revere Osmosis
看tutorial吧
5. Binding
5.1 Equilibria Binding
Ligand-Receptor Binding
要看一下ppt和tutorial,推\(p_{bound}\) Hill function
Reactions
\[K_{eq} \equiv \prod_i c_{i-eq}^{\upsilon_i}\]
\(\Delta G = \sum_i\upsilon_i\mu_i\) \(\mu = \mu_0+kT\ln \frac{c}{c_0}\) \(\Delta G =0\) \[\Delta G_0=-k_BT\ln K_{eq}\]
\[\Delta G=k_BT\ln \frac{K}{K_{eq}}\]
5.2 Protein folding
全是叙述,看一下ppt,不看也没问题
6. Grand-canonical-cooperativity
6.1 Gibbs-Ensemble
finding a given state of the system(charaterized by an energy \(E_A\) and nuber of particles \(N_A\) is proportional to the number of states available to the reservoir \(R\)) when the system is in this state
\[p_A = \frac{Z}{e^{-\beta(E_A-\mu N_A)}}\] \[Z=\sum_ie^{-\beta (E_i-\mu N_i)}\]
看一下tutorial,怎么用公式
6.2 Cooperativity
使用上节公式,看一下tutorial,怎么用公式
7. Aminoacids-pKa-ATP-Phosphorylation
7.1 Aminoacids-pKa
Proteins, chirality, diversity, peptide bond formation, basic protein structure, from primary to quaternary structure, disease \(K_W=[OH^-][H_3O^+],pH\) \(pK_a=pH-\lg \frac{[A^-]}{[AH]}\) 得:\(\frac{[A^-]}{AH}=\dots\) \[p(A^-)=\frac{1}{1+10^(pK_a-pH)}\]
\[p(HA)=\frac{1}{1+10^(pH-pK_a)}\]
7.2 ATP
看一下tutorial ATP怎么算
7.3 Phosphorylation
看一下tutorial ATP怎么算
8. Diffusion
8.1 Mean Variance SEM
mean: \(\overline{x}=\frac{1}{N}\sum_{i=1}^{N}x_i=\sum_ip_ix_i=\int_{-\infty}^{\infty}xp(x)dx\) \(\sigma:\) 三种形式
推一下ppt概率公式?
8.2 Diffusion
Divergence theorem: \(\int_V\nabla \cdot \mathbf EdV =\oiiint \mathbf E\cdot d\mathbf A\) Continuity equation: \(\nabla\cdot\mathbf j(\mathbf r,t)=-\frac{\partial \rho(\mathbf r,t)}{\partial t}\) Flux: \(\mathbf j \equiv \frac{Substance}{Area \times Time} = \rho \mathbf v\) Fick's First Law: \[j = -D\frac{d\rho}{dx},\enspace \mathbf j=-D\nabla \rho\]
Fick's Second Law: \[\frac{\partial\rho}{\partial t}=D\nabla^2\rho\] Solution: \[\rho(x,t)=\frac{\rho_0}{\sqrt{4\pi Dt}}e^{-\frac{(x-x_0)^2}{4Dt}}\]
\[\rho(\mathbf r,t)=\frac{\rho_0}{\sqrt{4\pi Dt}}e^{-\frac{(\mathbf r-\mathbf r_0)^2}{4Dt}}\] mean: \(\overline{x}(t)=0\) variance: \(\sigma_x^2=2Dt\)
Brownain motion microscopic model: Random walk
\(\overline{X}=0\) But what counts is not the mean position, but the spread \(\sigma_x^2=N(\overline{x^2}-\overline{x}^2)=N\overline{x^2}=Nl^2=N\overline{v}l\tau=\overline{v}lt\) 又:\(\sigma _x^2(t)=2Dt\) \(D=\frac{1}{2}\overline{v}l\) Different equations for different situations are in ppt
\[x = \sigma_x = \sqrt{2D}\sqrt{t}\]
Diffusion with external forces
\(v_D=\mu F=\frac{1}{\gamma}mg\) Down-flux: \(j_1=\mu mg\rho\) Up-flux: \(j_2=-D\frac{d\rho}{dh}\) \(j_1=j_2\) \[\rho(h)=\rho_0e^(-\frac{\mu mg}{D}h)\]
Compared to Boltzman distribution: \[\rho(h)=\rho_0e^{-\beta mgh},\enspace E=mgh\]
Einstein Relation: \[D=\mu kT\]
Special case for Stoke's Law
Frictional force (drag force) exerted on spherical objects with very small Reynolds numbers (e.g., very small particles)in a continuous viscous fluid Stoke's Law: \[F=6\pi R\eta v,\enspace \mu=\frac{v}{F}\]
\[D = \frac{kT}{6\pi R\eta}\]
Flux with external force: \(\mathbf{j}=-D\nabla \rho +\mu F\rho\) Diffusion equation with external force: \(\frac{\partial \rho}{\partial T}=D\nabla^2\rho-\mu F\nabla\rho\)
9. Electro
9.1 Poission-Boltzmann
Electronics for Salty Solutions
Magnetic fields play (almost) no role \[\nabla \cdot\mathbf{E}(\mathbf{r})=\frac{\rho(\mathbf{r})}{\varepsilon_0}\] Poisson's equation: \(\nabla^2\Phi(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\varepsilon_0}\) Laplace's equation: \(\nabla^2 \Phi(\mathbf{r})=0\)
\(p_{Ion}(\mathbf{r})\propto e^{-\beta E(\mathbf{r})}, \enspace E(\mathbf{r})=q\Phi(\mathbf{r})\) Charge density of the ion cloud: \[\rho_i(\mathbf{r})=q_in_i^{\infty}e^{-\beta q_i\Phi(\mathbf{r})}\]
total charge density: \[\rho_{Ions}(\mathbf{r})=\sum_iq_in_i^{\infty}e^{-\beta q_i\Phi(\mathbf{r})}\]
Poisson-Boltzman equation \[\nabla^2\Phi(\mathbf{r})=-\frac{e}{\varepsilon}\sum_{i=1}^nz_ic_{i,\infty}e^{-\beta z_ie\Phi(\mathbf{r})}-\frac{\rho(\mathbf{r})}{\varepsilon}\]
看一下tutorial
9.2 Debye-Huckel theory
Bjerrum length
Balance the ekectrostatic interaction energy: \[\frac{e^2}{4\pi \varepsilon_0Dl_B}=k_BT\]
\[l_B=\frac{e^2}{4\pi\varepsilon_0Dk_BT}\]
Debye-Huckel theory
Debye-Huckle equation: \[\nabla^2\Phi(\mathbf{r})=\frac{e^2\beta}{\varepsilon}(\sum_iz_i^2n_i^{\infty})\Phi(\mathbf{r})\]
Debye length \[\lambda_D=(\frac{\varepsilon k_BT}{e^2\sum_iz_i^2n_i^{\infty}})^{\frac{1}{2}}\]
Ionic strength \[I\equiv \frac{1}{2}\sum_iz_i^2n_i^{\infty}\]
\[\nabla^2\Phi(\mathbf{r})=\frac{1}{\lambda_D^2}\Phi(\mathbf{r})\]
看一下tutorial中公式怎么用的
10. Polymers-CentralLiit
10.1 Intro-Polymers
10.2 Binomial distribution
\[ p(k) = C_n^k p^k(1-p)^{n-k} \]
Special case p=0.5
Expectation value:
If n=1, p(1)=p. \(\langle x \rangle = \sum_{i=1}^1 1\cdot p = p\) $x+y = x y $ therefore \(\langle x \rangle = np\)
Poisson limit theorem
n较大, p较小时,二项分布可以近似为泊松分布
10.3 Polymers-Random walk Central limit theorem
Atoms don't always matter.
Random walks: freely jointed chain (FJC)
几段等长的segment连接,每一段都可以是任意方向,each segment 的长度叫做 Kuhn length (a)
Chain: 1D random walks
The expected value of the walker's distance from the origin, R, after N steps is 0. Similar to diffusion mean = 0, variance = \(Na^2\) R为end-to-end distance
Central limit theorem
For a set of N random variables {x_n} with finite mean and variance, the sum X of {x_n} will tend towards a Gaussian distribution regardless of the distribution of x_n
10.4 Polymers - Random walk
Sharpness of the Gause curve: \[ \sigma_x = \sqrt{N} \]
\[ \frac{\sigma_x}{N} = \frac{1}{\sqrt{N}} \]
As N becomes larger, the RMS distance increases, but the relative (to N) RMS distance becomes tiny, so it is extremely unlikely to be far (as compared to N) from the pub door.
Polymer end‐to‐end vector (1D)
\(\langle x^2 \rangle = Na^2\) \(p(x,N) \frac{1}{2\pi Na^2}e^{-\frac{x^2}{2Na^2}}\)
3D case
\[ P(R;N) = P(R;N)(1D case)^3 \]
Similar to diffusion
End-to-end distance R
\(P_{3d}(N,R)4\pi R^2dR\) 3D Maximum of distribution NOT at zero! Different from the 1D case.
Limitation of Guassian model
Wrong for \(R>Bb\)
\(P(R;N)\) is sharply peaked at R=0
11. FJC-Kuhn_Rg
11.1 FJC
\(C_n=\frac{1}{n}\sum_{i=1}^nC_i'\): Flory's characteristic ratio \(\langle R^2 \rangle = l^2\sum_{i=1}^nC_i'=C_nnl^2\)
\(C_{\infty}\): Flory's characteristic ratio, for large chain
Freely rotating chain model (FRC)
different from FJC: \(\theta\) is const. same for all
\[ \langle R^2 \rangle = nl^2 + 2nl^2\frac{\cos \theta}{1- \cos \theta} = nl^2\frac{1+\cos \theta}{1-\cos \theta} \]
\[ C_{\infty} = \frac{1+\cos \theta}{1-\cos \theta} \]
Persistence length
\[ s_p = -\frac{1}{\ln(\cos \theta)} \]
For rigid model: \(L_p=a\) For Continuous model: tangent correlation function \[ \langle t(s)\cdot t(u) \rangle = e^{-|s-u|/\zeta _p} \] For Worm-like chain(WLC) modle:DNA: small \(\theta, \ln(\cos \theta)\approx -\frac{\theta ^2}{2}\) \[ l_p = s_pl = l\frac{2}{\theta ^2} \]
\[ C_{\infty} = \frac{1+\cos \theta}{1-\cos \theta} \approx \frac{4}{\theta ^2} \]
\[ b=l\frac{C_{\infty}}{\cos (\frac{\theta}{2})}\approx l \frac{4}{\theta ^2}=2l_p \]
Kuhn lebgth b is twice the persistence length.
11.2 Polymers - Radius of Gyration(回转半径)
The radius of gyration is used because it can be easily measured experimentally.
Radisu of gyration determined via scattering experiments
Tutorial 证明 看一下tutorial中公式怎么用的
12. EntropicForce-AFM
12.1 Entropic Force
\[ \Omega (N,x) \propto p(N,x), S = k_B\ln \Omega \]
\[ \Delta S = -\frac{k_B}{2Na^2}x^2 \]
\[ \Delta G = \Delta U - T\Delta S \]
The ideal chain has no internal energy U
\[ \therefore \Delta G = -\frac{k_BT}{2Na^2}x^2 \]
\[ f = \frac{\partial G(N,x)}{\partial x} = \frac{k_BT}{Na^2}x \]
Hooke's law: entropic spring constant \[ k = \frac{k_BT}{Na^2} \]
It's easier to stretch polymers with:
- large numbers of monomers N
- large monomer size a
- at lower temperature T
The entropic nature of elasticity in polymers distinguishes them from other materials.
The ideal chain can be thought of as an entropic spring and obeys Hooke's law for elongations much smaller than the maximum elogation. 可以把上面那个x换成end-to-end vector R
等会看ppt吧,写不下去了
12.2 DNA Properties and genetics
structure and packing Polymerase chain reaction
13. DNA-Genetics-Bending
13.1 DNA-Genetics
GENETICS NETWORKS: DOING THE RIGHT THING AT RIGHT TIME maybe 再看一下ppt上概率那一张
13.1 Bending
Three modes of deformation of a beam:
- stretching
- bending
- twisting
if a bond stretches by \(\Delta a\), the beam stretches by \(\Delta L = \frac{L_0}{a_0}\Delta a\)
\[ \epsilon = \frac{\Delta L}{L_0} = \frac{\Delta a}{a_0} \]
看ppt上公式吧,还有tutorial
14. DNA-Looping-packing-Viruses
14.1 DNA-Looping
\[ E_{bend} = \frac{EIL}{2R^2}, L = 2\pi R \]
\[ \therefore E_{loop} = \frac{\pi EI}{R} = \frac{2\pi^2EI}{L}, \zeta_p / x_p = \frac{EI}{k_BT} \]
\[ E_{loop} = k_BT2\pi^2\frac{x_p^2}{L} = k_BT2\pi^2\frac{x_p^2}{d\cdot N_{bp}}, L = d \cdot N_{bp} \]
\[ \Delta S_{loop} = k_B \ln p_o = k_B(-\frac{3}{2}\ln N_{bp}+const) \]
\(p_o\) is the probability of loop formation, \(p_o \propto N_{bp}^{-\frac{3}{2}}\)
\[ \Delta G_{loop} = \Delta E_{loop} - T\Delta S_{loop} \]
14.2 DNA packing, Viruses
Viruses as Charged Spheres \(q = -2e\) per base pair
\[ U_{el} = \int dU = \int _0^R V(r)dq \]
DNA in solution: \(\lambda _D\) DNA in capsid
\[ W = NkT \ln (\frac{V_{cloud}}{V_{capsid}}) \]
ppt上单分子技术
15. Reactions
看一下tutorial中公式怎么用的或者pdf推导
Some examples
Cytoskeleton polymerization
\[ \frac{dn}{dt} = k_{on}(c_)-\frac{Mn(t)}{V}-k_{off} \]
16. Membrane-Surfaces
16.1 Membranes-Intro
- 2D fluid: Lateral diffusion
- MP can also diffuse
- Lipid flip-flop
Lipids self assemble
The effective shape of a lipid molucule is described by a packing parameter:
\[ P = \frac{v}{al} \]
Membrane Permeability
\[ j = P\Delta c \]
P为Permeability coefficient
All membranes indergo spontaneous shape changes and fluctuations due to thermal energy or application of external forces
Membrane fusion and budding
16.2 Surfaces Math Background
看一下tutorial中公式怎么用的, ppt 要是有时间也可以看看吧
\[ dE_{surface} = [\frac{\kappa}{2}(\frac{1}{R_1}+\frac{1}{R_2}-\frac{2}{R_0})^2+\frac{\kappa G}{R_1R_2}]dA \]
16.3 Membrane deformation and curvature
bending curvature: height function
\[ \kappa = \frac{1}{R} = \frac{\partial ^2h}{\partial x^2} \]
对角化Hessian matrix, 本征值即为两个方向上的曲率
\[ G_{bend} = \frac{K_b}{2}\int da [\kappa _1+\kappa _2]^2 \]
\[ G_{thickness} = \frac{K_t}{2} \int (\frac{w-w_0}{w_0})^2da \]
\[ G_{stretch} = \frac{K_a}{2} \int (\frac{\Delta a}{a_0})^2 da \]
17. Membrane-Potential
17.1 MPs
Membrane proteins
MP structure determination
17.2 Membrane Potential
\[ c(x) \sim e^{\beta E(x)} = e^{-\beta z eV(x)} \]
\[ \Delta V = V_2 -V_1 = \frac{k_BT}{ze} \ln \frac{c_1}{c_2} \]
\[ \Delta \epsilon = \Delta \epsilon _{conf} - p \frac{V_{mem}}{d} \]
\[ p_{open} = \frac{e^{-\beta \Delta \epsilon}}{1+e^{-\beta \Delta \epsilon}} \]
Nerst equation relates chemical potential to electric potential
18. Membrane-PatchClamp
18.1 Vesicles
For a vesicle of radius R:
\[ GG_{bend} = 8\pi K_b \]
For a Cylinder:
\[ G_{bend} = K_b\pi \frac{L}{R} \]
18.2 Surface Tension
表面处:\(E = -\frac{z}{2}\epsilon\) 内部:\(E = -z\epsilon\)
\[ \Delta E = +\frac{z}{2}\epsilon \]
Surface tension \(\gamma\): Energy per unit area of the surface = surface energy density
\[ \gamma = \frac{F}{2L} = \frac{dW}{dA} \]
\(dA\) is total area change, 2 sides
Laplace-Young law:
\[ \Delta P = \frac{2\gamma}{R} \]
看tutorial怎么用
18.3 Membranes: Patch clamp
看tutorial怎么用